Contralateral delay activity reveals life-span age differences in top-down modulation of working memory contents.
نویسندگان
چکیده
Estimates of working memory (WM) capacity increase in children, peak in young adulthood, and decline thereafter. Despite this symmetry, the mechanisms causing capacity increments in childhood may differ from those causing decline in old age. The contralateral delay activity (CDA) of the electroencephalogram, an event-related difference wave with a posterior scalp distribution, has been suggested as a neural marker of WM capacity. Here, we examine 22 children (10-12 years), 12 younger adults (20-25 years), and 22 older adults (70-75 years) in a cued change detection paradigm. Load levels and presentation times were varied within subjects. Behaviorally, we observed the expected life-span peak in younger adults and better performance with longer presentation times. With short presentation times, task load increased CDA amplitude and decreased behavioral performance in younger adults. Both effects were less pronounced in older adults. Children showed a unique pattern: Their behavioral load effects were as strong as those of younger adults, but their CDA was unaffected by load. With long presentation times, task load modulated the CDA in children and older adults but not in younger adults. These findings suggest that age-related differences in CDA reflect changes in the top-down control over WM representations.
منابع مشابه
Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants perf...
متن کاملNeural indices of improved attentional modulation over middle childhood
The ability to control the focus of attention relies on top-down modulation of cortical activity in areas involved in stimulus processing, and this ability is critical for maintaining items in working memory in the presence of distraction. Prior research demonstrates that children are less capable of focusing attention, relative to adults, and that this ability develops significantly during mid...
متن کاملNoninvasively Decoding the Contents of Visual Working Memory in the Human Prefrontal Cortex within High-gamma Oscillatory Patterns
The temporal maintenance and subsequent retrieval of information that no longer exists in the environment is called working memory. It is believed that this type of memory is controlled by the persistent activity of neuronal populations, including the prefrontal, temporal, and parietal cortex. For a long time, it has been controversially discussed whether, in working memory, the PFC stores past...
متن کاملEarly selection versus late correction: Age-related differences in controlling working memory contents.
We examined whether a reduced ability to ignore irrelevant information is responsible for the age-related decline of working memory (WM) functions. By means of event-related brain potentials, we will show that filtering is not out of service in older adults but shifted to a later processing stage. Participants performed a visual short-term memory task (change-detection task) in which targets we...
متن کاملAttention Modulates Maintenance of Representations in Visual Short-term Memory
Recent studies have shown that selective attention is of considerable importance for encoding task-relevant items into visual short-term memory (VSTM) according to our behavioral goals. However, it is not known whether top-down attentional biases can continue to operate during the maintenance period of VSTM. We used ERPs to investigate this question across two experiments. Specifically, we test...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 21 12 شماره
صفحات -
تاریخ انتشار 2011